
Abstract We report results of numerical simulations of
complex fluids, using a combination of discrete-particle
methods. Our molecular modeling repertoire comprises
three simulation techniques: molecular dynamics (MD),
dissipative particle dynamics (DPD), and the fluid 
particle model (FPM). This type of model can depict
multi-resolution molecular structures (see the Figure)
found in complex fluids ranging from single micelle,
colloidal crystals, large-scale colloidal aggregates up to
the mesoscale processes of hydrodynamical instabilities
in the bulk of colloidal suspensions. We can simulate dif-
ferent colloidal structures in which the colloidal beds are
of comparable size to the solvent particles. This under-
taking is accomplished with a two-level discrete particle
model consisting of the MD paradigm with a Lennard-
Jones (L-J) type potential for defining the colloidal par-
ticle system and DPD or FPM for modeling the solvent.
We observe the spontaneous emergence of spherical or
rod-like micelles and their crystallization in stable hex-
agonal or worm-like structures, respectively. The ordered
arrays obtained by using the particle model are similar to
the 2D colloidal crystals observed in laboratory experi-
ments. The micelle shape and its hydrophobic or hydro-
philic character depend on the ratio between the scaling
factors of the interactions between colloid–colloid to col-
loid–solvent. Unlike the miscellar arrays, the colloidal
aggregates involve the colloid–solvent interactions pre-
scribed by the DPD forces. Different from the assump-

tion of equilibrium growth, the two-level particle model
can display much more realistic molecular physics,
which allows for the simulation of aggregation for vari-
ous types of colloids and solvent liquids over a very
broad range of conditions. We discuss the potential 
prospects of combining MD, DPD, and FPM techniques
in a single three-level model. Finally, we present results
from large-scale simulation of the Rayleigh–Taylor in-
stability and dispersion of colloidal slab in 2D and 3D.
Electronic supplementary material to this paper can be
obtained by using the Springer LINK server located at
http://dx.doi.org/10.1007/s00894-001-0068-3.
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Introduction

The emergence of genuinely new and fascinating phe-
nomena at the nanoscale to mesoscale creates a great
need of adequate theory, modeling, and large-scale nu-
merical simulation in order to understand the different
regimes of the greatest challenges and opportunities in
those transitional regions where nanoscale phenomena
are just beginning to emerge from macroscopic and mi-
croscale regimes, such as self-assembling amphiphilic
mixtures, colloidal suspensions, and porous materials.

Today there exist many numerical methods for model-
ing physical and chemically reacting phenomena in com-
plex molecular fluids. They include molecular dynamics,
lattice Boltzmann gas, and cellular automata, [1, 2] dif-
fusion limited aggregation [3, 4] or those employing fi-
nite element simulation, e.g., for Cahn–Hillard fluids. [5]
Our model falls under the category of the discrete-parti-
cle paradigm and comprises three distinct kinds of nu-
merical techniques: molecular dynamics (MD), dissipa-
tive particle dynamics (DPD), and fluid particle model
(FPM) techniques. The DPD method [6] and its general-
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ization – the FPM [7] – can provide a bridge between the
basic domains of complex fluids, i.e., micelles and col-
loidal particles, and large-scale structures such as drop-
lets, crystals, colloidal agglomerates, and self-organized
patterns from molecular fluid instabilities.

The distinct advantage held by DPD over the other
methods is the direct possibility for matching the scales of
the discrete-particle simulation to the dominant spatio-
temporal scales of the entire system. The real cross-scale
endeavor, where different kinds of time-steps can be used,
reduces then to a proper definition of DPD interactions by
using bottom-up [8] or top-down approaches. [9] The 
fluid particles are represented by the clusters of atoms. As
shown in Fig. 1, the relatively narrow gap between the
smallest structures and large-scale structures in complex
fluids can be connected by using a reasonable number of
fluid particles (a hundred thousand in 2D and few millions
in 3D) instead of billions of interacting atoms.

One disadvantage of DPD is the lack of a drag between
the central particle and the second one orbiting in a cir-
cumference around the first one. The non-central force, in-
troduced in the FPM, is proportional to the difference be-
tween particle velocities and eliminates this defect. How-
ever, this makes the model more complex and suggests its
use for longer length-scales, where the FPM particle is
large enough in that it interacts only with its closest neigh-
bors. The other problem with DPD is that DPD particles

cannot simulate “solid” granular material with attractive
forces. The colloidal particles are just such solid grains
immersed in a solvent. For simulating suspensions con-
sisting of small number of colloidal beds in which the hy-
drodynamic interactions between colloidal particles play
the dominant role, we can employ the fluid particle dy-
namics (FPD) approach. [10] In FPD, the colloidal beds
are MD particles interacting with Lennard-Jones (L-J)
forces. The hydrodynamic interactions are derived from
the global velocity field, which is computed directly by in-
tegrating the Navier–Stokes fluid dynamical equations.
For systems with colloidal beds of a similar size to the
complex fluid microstructures (e.g., polymeric clusters,
large blood cells) or not much larger, the bed–solvent par-
ticle interactions become important. These molecular in-
teractions are responsible for creating colloidal micro-
structures, such as micelles and colloidal crystals, which
cannot be simulated within the framework of FPD.

In [11] we attack this problem by employing a two-
level particle model in which the colloidal beds are sim-
ulated with MD particles, while the solvent is represent-
ed by the DPD model. Because both the colloidal beds
and fluid particles are comparable in size, we have em-
ployed a uniform time-step in the integration of the
Newtonian equation of motion.

We will demonstrate the cross-scaling results by sim-
ulating complex fluids with a three-level method for
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Fig. 1 Multiresolution in a
complex fluid



which colloidal beds are represented by MD particles but
fluid particles – simulated by using DPD and/or FPM in-
teractions – represent a solvent. At first, the three-level
method is presented starting from the most general fluid
particle model. By introducing two-level model compris-
ing MD and DPD (or FPM) forces, we can simulate mis-
cellar solutions, which undergo crystallization into stable
hexagonal or worm-like structures. By merely changing
the character of the particle–particle interactions, we can
go up the spatio-temporal scale simulating large colloi-
dal aggregates, which involve as many as 20 million par-
ticles. On the largest scale, we focus our attention on the
Rayleigh–Taylor [12] instability, which induces mixing
of the colloidal mixtures and dispersion of the colloidal
slab. These simulations are carried out with a three-level
method (MD, DPD, and FPM) and with a combined total
number of particles in the neighborhood of several mil-
lion. Finally, we summarize the results and discuss the
prospects of the discrete particle method as a computa-
tional tool for modeling mesoscopic dynamical phenom-
ena of complex fluid.

Fluid particle model

A theoretical framework for the fluid particle model can
be found in [7]. The fluid particles, defined by their mass
mi, position ri, and velocity vi, interact with each other.
The particle can be viewed as a “droplet” consisting of
liquid molecules with an internal structure and with
some internal degrees of freedom. We use the two-body,
short-ranged DPD force F as postulated in [7]. This type
of interaction consists of a conservative force FC, two
dissipative components FT and FR, and a Brownian force
F̃ which are defined by:

(1)

(2)

(3)

(4)

(5)

where: rij – is a distance between particles i and j,
rij=ri–rj is a vector pointing from particle i to particle j
and eij=rij/rij, D – is spatial dimension, T – is the temper-
ature of particle system, kB – is the Boltzmann constant,
dt – is the time-step, γ – is a scaling factor for dissipation
forces, ω – is angular velocity, dWS, dWA, tr[dW]1 – are
symmetric, antisymmetric, and trace diagonal random
matrices of independent Wiener increments defined in
[7], A(r), B(r), C(r), , F(r) – are func-

tions dependent on the interparticle separation distance
r=rij. [7] T – is a dimensionless matrix given by:

(6)

1 – is the unit matrix.
As proved in [7] the one-component FPM system

yields the Gibbs’ distribution as the equilibrium solution
to the Fokker–Planck equation under the detailed bal-
ance (DB) Ansatz. Consequently it satisfies the fluctua-
tion–dissipation theorem. According to the fluctua-
tion–dissipation theorem the normalized weight func-
tions are chosen such that:

(7)

The non-central force in FPM, which is proportional to
the difference between particle velocities, introduces an
additional drag lacking in the DPD model. The central
particle and the second one orbiting around the first one
do not produce any force in the DPD algorithm, thus
making it inconsistent. The non-central force also results
in an additional rotational friction given by Eq. (4). The
temporal evolution of the particle ensemble obeys the
equations:

(8)

(9)

(10)

where the torques in Eq. (10) are given by:

(11)

One can verify easily that the total angular momentum is
conserved.

The main purpose of this model is to generalize both
the smoothed particle hydrodynamics method (SPH) 
[13] – the particle based algorithm used for simulations
in macroscale – and dissipative particle dynamics. FPM
can predict precisely the transport properties of the fluid,
thus allowing one to adjust the model parameters accord-
ing to the formulas of kinetic theory. Unlike the SPH, the
angular momentum is conserved exactly in FPM. The
FPM model can thus be interpreted as a Lagrangian pre-
scription of the non-linear fluctuating hydrodynamic
equations. [7]

Three-level model

The FPM model represents a generalization not only of
DPD but also of the MD technique. It can be used as
DPD by setting the non-central forces to zero, or as MD
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by dropping the dissipative and Brownian components.
The fluid particle model holds an advantage over DPD
but only for larger scales where the particles are ade-
quately large and can interact only with their closest
neighbors. In this situation DPD is less efficient because
many more particles than for FPM should be involved
for creating a drag between circumvented DPD particles.
DPD is computationally more efficient than FPM at
smaller scales, for which the interaction range (rcut) of
the potential must be longer.

In the model two types of particles are defined ac-
cordingly by:

● Colloidal particles (CP), with an interaction range
≥2.5×λ, where λ is a characteristic length, equal to
the average distance between particles. The CP–CP
interactions can be simulated by a soft-sphere, ener-
gy-conserving potential with an attractive tail.

● Solvent particles (SP), the “droplets of fluid” located
in the closest neighborhood of the colloidal particles
and in the bulk solvent. Depending on the interaction
range central or non-central forces are included with-
in this framework.

In conventional DLVO theory (Derjaguin, Landau, 
Verwey, Overbeek) [14] the long-range electrostatic in-
teractions between colloidal spheres can be modeled by a
screened-Coulomb repulsion. [15] However, some ex-
perimental findings [14, 16] show that like-charged mac-
roions have been attracted to one another by short-
ranged forces. This phenomenon cannot be explained by
conventional theories. The recent simulation results [17]
show that the fluctuations of the charge distribution by
the small ions result in the attraction between microions.
The mean force is a combination of hard-sphere and
electrostatic force. As shown in Fig. 2, the L-J force [18]
is close to the mean force obtained from large-scale
Monte-Carlo calculations performed for a real colloidal
mixture. [17] The experimentally measured potential
[16] between a pair of 0.65-µm-diameter polystyrene sul-
fate spheres, which lie very close to an electrically
charged glass, is also very similar to the L-J interactions.
A better approximation of the colloid–colloid interac-
tions is possible by adding to the L-J force a very steep
force with a soft core (see Fig. 2). However, because of
simplicity, we will use the shifted and truncated L-J
force as a sufficiently accurate approximation for the ef-
fective force F(rij) (see Eqs. 16 and 17).

We assume that the bulk solvent is simulated by using
FPM interactions within an interaction range ≤1.5×λ.
Such assumptions allow for the decreasing number of
neighbors and shorten the simulation time considerably.
A short cut-off radius in DPD simulations generates ad-
ditional artifacts in the velocity autocorrelation function
because hydrodynamic behavior appears only on length
scales that involve a relatively large number of particles.
[9] For FPM this side effect should be much smaller due
to the additional non-central drug force between FPM
particles, which is neglected in DPD. The side effects of
using a shorter cut-off radius in FPM influences, howev-

er, the behavior of solvent–colloid mixture. Assuming
shorter-ranged FPM interactions between solvent parti-
cles in the neighborhood of colloidal particles does not
lead to nucleation and formation of micelles. They ap-
pear spontaneously, both for DPD and FPM simulations,
only within a longer interaction range (≥2.5×λ).

For savings in CPU time we also decided to use a
simpler DPD force instead of FPM in the neighborhood
of colloidal particles. There is no DPD fluid in the
system. Interactions between solvent particles are only
different in the presence of colloidal particles. Solvent
particles interact by using the DPD force (larger cut-off
radius) as one of them has at least one colloidal particle
in its neighborhood. Otherwise they interact with the
FPM force with a shorter cut-off radius.

All the interactions are symmetrical and total momen-
tum and kinetic energy are conserved. As shown in [7]
DPD and MD are special cases of FPM with some pa-
rameters equal to 0. Therefore, the system consisting of
solvent and colloidal particles represents the Gibbs equi-
librium ensemble provided that FPM multicomponent
system does. However, until now there is no formal
proof that the multicomponent FPM system is the Gibbs
equilibrium ensemble. Such a proof exists only for DPD.
[19] We assume here by the analogy that it is also true
for FPM.

Thus, the three-level system consists of three different
procedures, each representing a particular technique of
interparticle interactions. Due to the comparable size for
the three types of particles, the time-step for integrating
the Newtonian equations of motion is uniform.

The main assumptions in this model are as follows:

1. We consider here an isothermal system, which consists
of M particles. The number of species can easily be
generalized for simulating multiphase systems. [19]
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Fig. 2 The model of the two-body conservative forces represent-
ing the CP–CP interactions



2. The particle system is simulated inside a rectangular
box with periodic or hard wall boundary conditions.
Particles of various types can be scattered randomly
in the box, i.e., this multi-component system can ini-
tially be mixed perfectly, or separated by a sharp in-
terface (stratified, circle, rectangular, random shape).

3. The weight functions in Eqs. (5)–(7) satisfy the con-
ditions imposed. Due to the freedom allowed by the
model in selecting the weight functions, we have as-
sumed that:

(12)

where, rcut – is a cut-off radius, which defines 
the range of interactions. For r=rij>rcut, Fij=0. The

and weight functions from Eq. (5) can 
be computed from Eqs. (7) and (12).

Because of the stochastic nature of the equations of mo-
tion for DPD and FPM, finding a suitable numerical
scheme is a non-trivial problem. The common integration
methods used for DPD simulation (e.g., [20, 21, 22]) are
based on a second-order in time-stepping O(dt2) veloci-
ty–Verlet scheme. Because the scheme is only an approxi-
mation of a stochastic integrator it generates artifacts lead-
ing to unphysical correlations and monotonically increas-
ing (or decreasing) temperature drift. In the DPD (and
DPD–MD) model we employed a hybrid integrator, which
consists of the “leap frog” algorithm in time-stepping for
the particles positions and the Adams–Bashforth scheme
for the particle velocities. [23] Due to large instabilities
observed for angular velocity computations we used the
fourth-order equivalent of the hybrid scheme in FPM. [24]

As shown in Fig. 3, both the hydrodynamic tempera-
ture and hydrodynamic pressures do not exhibit notice-
able drift for 1 million time-steps. However, the hydrody-
namic temperature is 2% higher than the assumed tem-
perature. This is due to the non-energy conserving
scheme applied. As shown in Fig. 3, the detailed balance
condition is only slightly violated. For simulations requir-
ing more accurate conservation of thermodynamic quanti-
ties, another integrator which uses a thermostat should be
considered. The simulation from Fig. 3 was made for the
mixture of FPM and L-J particles (with concentration rate
20%) for dimensionless time-step dt=0.05. Moreover, be-
cause the conservative interactions dominate over random
and dissipative forces in our simulations, the artifacts due
to integration schemes are less distinct. The problem of
selecting a self-consistent, free of artifacts, and efficient
integrator for stochastic and velocity dependent DPD and
FPM models remains still open.

The values of scaling factors of forces components
are approximated by the continuum limit equations.
From partial pressure P:

(13)

[6], we compute the value of Π – the scaling factor for
the conservative interactions (Eq. 12). The γ parameter

of dissipative forces is adjusted according to the formula
from kinetic theory: [7]

(14)

where: νb – is a bulk kinematic viscosity, D – is dimen-
sionality, c2=kBT/m, and

(15)

Colloidal arrays

With the two-level model (DPD and MD) we can study
the molecular dynamics of binary fluids. This system
consists of colloidal particles (CPs) immersed in a sol-
vent represented by an ensemble of solvent particles
(SPs). The colloidal particles are scattered randomly in
the box, i.e., this binary system is initially well mixed.

The collision operator for the whole particle system
consists of DPD and L-J components, and is given by the
formula:

(16)

(17)

Thus, the CP particles interact with the L-J force with
both CPs and SPs particles. Because the forces are short
ranged, we use a modified L-J force given by Eqs. (16)
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Fig. 3 Partial pressure Pth and temperature Tth of the 2D FPM par-
ticle system with 20% of L-J colloidal particles (the total number
of particles M=4.5×104) with time. The initial values for pressure
Pth=0.01 (in dimensionless units) and for an assumed temperature
T=100 K



and (17) vanishing for rij≥rcut, where rcut is a cut-off 
radius. The dual character of SP particle interactions –
dissipative particle dynamics with other SP beads and
molecular dynamics with L-J interaction and CP parti-
cles – can be explained by assuming that the SP ensem-
ble can simulate a complex fluid. For example, the SP
particles can represent parts of polymeric chains whose
mutual interactions are modeled by using DPD forces,
while the conservative and repulsive–attractive forces
are responsible for gluing the chains to the hard-core
nano-particles. The fundamental parameters of the parti-
cle system are presented in Table 1 in dimensionless
units. The size of the system is scaled up to the cut-off
radius. The time-step and the mass of colloidal particles
are set to 1. The energy unit (εUnit) is set arbitrarily as a
reference point for scaling both the L-J CP–CP and
CP–SP interactions. It corresponds to the ε parameter of
the L-J force.

In [11] we show that, depending on the εCP–CP/εCP–SP
aspect ratio, different colloidal structures (2D colloidal
arrays) can be simulated. Simultaneously we have re-
peated the calculations by using FPM with rcut=2.5×λ in-
stead of DPD (for FPM with rcut=1.5×λ we do not ob-
serve the creation of micelles). The simulations were
carried out at different concentrations of CP particles,
ranging from 10% to 30%.

The results shown below are produced by assuming a
concentration of CP particles of 20%. For a low aspect-
ratio configuration we find that the “hydrophilic” circu-
lar micelles can self-organize and be formed spontane-
ously. The micelle is represented by a colloidal particle
located in the center and surrounded by solvent particles.
The 2D hexagonal colloidal arrays are produced as a
consequence. These structures are very common [25]
and are observed in laboratory experiments, e.g., see
http://www-unix.oit.umass.edu/~dinsmore. By increas-
ing the ratio, the hexagonal phase undergoes a self-orga-
nized transition to a lamellar metastable phase (see
Fig. 4a and movie). [25, 26] The rod-like micelles from
Fig. 4b consisting of linearly arranged colloid particles
separated by solvent particles form worm-like arrays
(Fig. 4a), as shown on the URL http://chemeng.stan-
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Table 1 Principal parameters
of the particle system Parameter Value (in dimensionless units)

Entire particle rc – unit of length 1
system ∆t – unit of time 1

M=MCP=MSP – unit of mass 1
n – particle density 6.37
λ – avg. distance between particles 0.4
System size in rc units 42
εUnit – unit of energy 4.75×10–5

T0 – temperature of the system 0.1×εUnit

DPD fluid Ω – dissipative factor 10,100
Π – scaling factor for conservative forces 3.8×10–3

CP–CP interactions εCP–CP – L-J well depth 0.2–1.6×εUnit
σCP–CP – L-J parameter 0.4

CP–SP interactions εCP–SP – L-J well depth 0.1–1.6×εUnit
σCP–SP – L-J parameter 0.4

Fig. 4 a Worm-like structures in colloidal suspension. b The
zoom-in of the coexistence region of the lamellar and of the 
“hydrophobic” phases. The lamellar microstructures are built of
rod-like micelles. The “hydrophobic” phase represents hexagonal-
ly arranged spherical micelles with solvent particle in the cen-
ter (gray) surrounded by colloidal particles (white). The ratio
εCP–CP/εCP–SP=5, the number of particles is M=2×104, the number
of time-steps is N=106. See the supplementary material for movie
(Fig. 4S)



ford.edu/~gastgrp/images/dendritic-Xsmall.jpg. The la-
mellar metastable phase evolves into “hydrophobic” hex-
agonal arrays, as shown in Fig. 5, which then produce
larger aggregates. 

The clustering of micelles and small nano-particles
forming colloidal aggregates plays a very prominent role
in the development of new materials with a scale size
ranging from nano- to mesoscale. Fractal aggregates re-
present very fragile mechanical structures, which can be
easily torn apart as a result of adequately strong external
forces. Therefore, aggregating additives are used for
controlling the rheology of paints and other coating sys-
tems. At low shear rates these shear-thinning non-New-
tonian fluids have a high viscosity and a low viscosity at
high shear rates.

There are many numerical techniques devised for
simulating the colloidal aggregates. Most of these meth-
ods employ the Smoluchowski principle of coagulation
according to a given reaction scheme. [4, 27] These
methods are still far from achieving reality. They are ad-
equate for investigating static fractal structures of large
agglomerate by assuming a low initial concentration of
colloidal particles. For denser systems, the rheological
properties of solvent and the mechanisms of aggregation
vary tremendously with the particle concentration, which
cannot be predicted with simple composite theories. [16]

As shown in Fig. 5, the two-level method fits in very
well in fine-grained structures during the initial aggrega-
tion. However, the method is too computationally de-
manding for investigating large structures. More reliable
statistics are required for monitoring the global proper-
ties of the growth process. We propose an alternative ap-
proach for simulating large aggregates, which will entail
modifying the collision operator given in Eq. (17).

Going up to a larger spatio-temporal scale, we can as-
sume CP particles can be represented not by hard-core
beads but by the micelles. The SP particles are the DPD
“droplets” of a complex liquid solvent of the size of CPs.
At this time the CP particle interactions assume a dual
character. In order to avoid fluidization of the colloidal
particle system and allow them to aggregate, we have in-
sisted that the colloid–colloid interactions should possess
a hard-sphere core with a very short-ranged adhesive
part. [28] The soluble additives are excluded from a re-
gion, which is comparable to their own size near the par-
ticle surface. Consequently a depletion force is pro-
duced, [29] which is of entropic origin. For the sake of
simplicity, we have assumed here that CP–CP interac-
tions can be modeled by an L-J force, as it was in the
colloidal crystals case. In order to tune the system better,
we can employ more realistic depletion potentials [15] or
tabularized experimentally measured potentials. [16] Un-
like the case of miscellar arrays, the CP–SP interactions
are simulated by employing DPD forces. This can be jus-
tified on the grounds that now the SP beads represent
“droplets” of complex fluid, but not the fragments of
polymeric chain. Because the CP “droplet” contains a
hard core, we have modified the repulsive portion of the
conservative FC CP–SP forces. This makes the potential
to be steeper than that for the SP–SP interactions.

In Fig. 6 we present a snapshot from MD–DPD simu-
lation of a developed colloidal aggregate. By zooming
into a particular region of this frame, we can see clearly
the hexagonal structure of the aggregated body.

Employing the two-level model, [30] we have studied
the scaling properties of mean cluster size S(t), expressed
in number of particles versus time, by assuming a high
concentration of colloidal particles in the system. For the
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Fig. 5 Colloidal structures of circular “hydrophobic” micelles
simulated with two-level model. Only colloidal particles are visi-
ble. When we zoom in we can observe the hexagonal order of the
micelles (εCP–CP/εCP–SP=16, M=2×104, number of time-steps
N=106). See the supplementary material for zoom-in (Fig. 5S)

Fig. 6 Colloidal aggregates simulated with two-level model
(M=1.2×106, number of time-steps N=105, 33% colloidal par-
ticles 67% fluid). See the supplementary material for zoom-in
(Fig. 6S)



cases of non-cohesive systems, with a low concentration
of colloidal beads, the asymptotic growth for t→∞ of the
mean cluster size S(t) is given by:

(18)

where κ is the scaling-law index.
We show that in a dissipative solvent of high concen-

tration of colloidal particles, the growth of mean cluster
size can be described by the power law S(t)∝ tκ (see
Fig. 7a). We have found the intermediate DLA regime,
for which κ=1/2. It spans for a relatively long time. The
intermediate regime depends on physical properties of
the solvent such as the viscosity, temperature, and partial
pressure. The character of cluster growth varies with
time and the exponent κ shifts at longer time scales from
1/2 to ≈1. This result agrees with the theoretical predic-
tions for diffusion-limited cluster–cluster aggregation,
which state that for t→∞ the value of κ=1 for a low col-
loidal particle concentration. Instead, we show in Fig. 7b
that this process cannot be asymptotic with time for larg-
er CP concentrations.

Due to rotational diffusion in FPM, application of the
MD–FPM two-level model for a high concentration of
the CP particles should accelerate the initial agglomera-
tion process. However, the time required for formation
of the seeds is very short (about 1000 time-steps, com-
paring to a total simulation time about 105 time-steps). It
is much shorter than the time needed for producing the
miscellar phase. Therefore, we may expect that for the
same resolution the MD–FPM model would be not as ef-
ficient as the combined MD–DPD scheme.

Multiresolution structures developed in mixing 
induced by the Rayleigh–Taylor instability

The great advantages of the three-level model become
obvious in the simulation of multiscale phenomena asso-
ciated with the mixing induced by the Rayleigh–Taylor
instability. This process involves the CP particles in the
solvent. Let us assume that the upper part of the compu-
tational box is filled up with heavy (H) CP particles and
the lower part with lighter (L) SP solvent particles. The
heavy layer is ten times thinner than the lighter one. The
collision operator is given by Eqs. (16) and (17).

By using MD–DPD model for a medium sized parti-
cle system comprising M=106 particles of both types, we
need one IBM-SP processor running 1 week for integrat-
ing 105 time-steps. However, by using MD–DPD model
(with rcut=2.5×λ) more than 90% DPD particles simulat-
ing the solvent will not contribute to the small-scale phe-
nomena occurring on the CP–SP interface. Therefore, it
is reasonable to employ FPM with a shorter cut-off radi-
us (rcut=1.5×λ) in order to reduce greatly the computa-
tional time spent for calculating SP–SP interactions. We
assume that SP particles will interact as DPD (with
rcut=2.5×λ) being only in the closest neighborhood of CP
particles. The parameters of DPD and FPM interactions
were matched by using the kinetic theory equations [7]
for the same transport coefficients. The same solvent
particle can assume dual roles (DPD or FPM), depending
on whether CP particle lies within the interaction range.

In Fig. 8a and its zoomed-out portion we show both
the large-scale Rayleigh–Taylor patterns and the small-
scale nucleation of crystallites in the front of CP spikes.
As displayed in Fig. 8b, in the beginning the number of
micelles increases slowly on the CP–SP interface due to
diffusion. The nucleation process is accelerated in the
non-linear regime of the Rayleigh–Taylor instability. The
length of the interface separating two immiscible DPD
fluids during the mixing induced by the Rayleigh–Taylor
instability increases as t2. [31] The nucleation process
becomes faster. The number of micelles increases with
time as tk with k approximately equal to 5/2. The particu-
lar value of k does not depend on the temperature of the
system.

Since the CP–SP interactions do not have any singu-
larities and can be described by FPM-like forces, we can
investigate the dispersion of colloidal agglomerate in flu-
id over the mesoscale. Unlike in the liquid–liquid case in
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Fig. 7 a The mean cluster size S(t) and b the largest cluster size
Smax in time for different CP concentrations. The M=1.2×106 parti-
cles were simulated. Linear fits with κ≈0.5, κ≈1 are depicted in a



which the mixing starts spontaneously by the thermal
fluctuations, the solid–liquid system does not mix so
well. This is due to the energy dissipated in colloidal
systems and the resistance offered to the mixing by the
attractive molecular forces. The fragmentation occurs
provided that the colloidal system is permeable and un-
dergoes excessive wetting. Three types of fragmentation
structures are found: rupture, erosion, and shatter. [32]
The microstructures produced during mixing are com-
pletely different from the bubbles and spikes detected in
classical Rayleigh–Taylor instability. [12] Instead, one
can observe multi-scale structures consisting of large
fishbone clusters made of a long threads or more oblate
agglomerates.

The snapshots from simulations involving more than
1 million particles are displayed in Fig. 9a,b,c. One can
discern the places where more vigorous flow occurs,
producing slender thread-like structures. The fishbone
fragmentation of large clusters, as shown in Fig. 9a,b, is
caused by the flow dynamics. We depict in Fig. 10a how
the threads go along with the flow streamlines, while the
oblate aggregates are found in stagnant regions. After a
period of vigorous fragmentation, the energy of flow
damps out and the threads shrink and then agglomerate.
The aggregation of colloidal beds occurs due to colli-
sions between the aggregates, which are perturbed by the
flow, or due to cohesion forces. The fishbone structures
in this mixing process come from a quasi-equilibrium
situation due to the dynamical encounter between the
colloidal particles and the overall flow induced by the
global fluid dynamics. The shatter mechanism of slab
fragmentation is depicted in Fig. 10b. Due to high 
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Fig. 8 a The formation of hexagonal structures of circular mi-
celles – created by one solvent particle in the center (gray) sur-
rounded by colloidal particles (black) – is observed in front of the
spikes. See the supplementary material to observe the difference in
scales. b The plot shows the number of micelles in time for two-
particle systems at different temperatures

Fig. 9 a A snapshot from sim-
ulation of an accelerated colloi-
dal cluster falling in a long box
in 2D (about 1 million particles
are simulated). b The zoom-in
of a part of Fig. 9a. c The snap-
shot from respective simulation
in 3D (two million particles are
simulated). The MD–FPM
models were employed



energy load caused by compression and decompression
the colloidal slab is fragmented instantly into many
small pieces, which after some time slowly agglomerate
in larger clusters. 

Concluding points

Our discrete-particle simulations have clearly revealed
the prospects of the three-level model comprising MD,
DPD, and FPM. We have delineated the many significant
advantages of the three-level model over other mesosco-

pic methods used for complex fluid simulation. These
advantages are:

1. The three-level model is a homogeneous, particle-
based model, which can operate over diverse spatio-
temporal scales, which extend from a micelle, colloi-
dal crystals, droplets, to large-scale features.

2. This model is consistent with the nonlinear fluctuat-
ing hydrodynamic equations. [7, 33, 34] Since ther-
mal noise is introduced consistently, it can be used for
studying non-equilibrium thermal fluctuations in hy-
drodynamic systems.

3. The particles evolve in a gridless fashion in real-time,
thus allowing for a real-time, realistic visualization.

The principal results obtained in the modeling of com-
plex fluids with discrete particles can be summarized as
follows :

1. Using a two-level model consisting of DPD and MD,
we have observed the creation of colloidal crystals
with different phases: “hydrophilic”, lamellar and
“hydrophobic”. By changing the balance of the scal-
ing factors in the CP–SP and CP–CP interactions, we
can discern clearly the transition of one phase to the
other. Metastable regimes with two phases in coexis-
tence are detectable.

2. By changing the character of the CP–SP interactions
from conservative to dissipative, we can investigate
the dynamics of colloidal aggregates. We show that in
the dissipative solvent with high concentration of col-
loidal particles, the growth of mean cluster size can
be described by the power law S(t)∝ tκ. In the interme-
diate DLA regime, for which κ=1/2, this lasts for a
long time. The character of cluster growth varies with
time and the exponent κ shifts at longer times from
1/2 to ≈1. We show that this process cannot approach
an asymptotic limit in time for larger CP concentra-
tions.

3. The three-level (MD–DPD–FPM) simulation of mix-
ing associated with the Rayleigh–Taylor instability of
colloidal particles in a solvent shows that the colloidal
arrays may appear not only in the well mixed colloi-
dal suspension but also on the mixing front. An in-
crease in the number of micelles in time during mix-
ing occurs faster than the increase in the length of the
CP–SP interface.

4. In simulating the dispersion of a colloidal slab, three
types of fragmentation structures can be developed:
rupture, erosion, and shatter.

In [35] the conception of the “higher level” generic DPD
paradigm was presented. This model is more general and
thermodynamically consistent than FPM – the volume of
particle, internal energy, and entropy of the particle
system are variable. Our criticism of this model bases
mainly on its computational complexity. The “generic”
DPD has a greater number of implicit variables than for
FPM. The selection of a numerical integrator for the re-
sulting stochastic differential equations to be sufficiently
reliable, fast, and convergent for a large number of time-
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Fig. 10 a A snapshot from simulation of the mixing induced by
the Rayleigh–Taylor instability in 2D. Fragmentation and agglom-
eration patterns can be easily observed. For the 2D picture the 
Huygens System 2.2.1 [http://www.svi.nl/] was implemented for
data extraction. The densest regions are in dark blue and green,
and the regions of the lowest density in dark red. b Fragmentation
of a colloidal slab for MD–DPD two-level model in 3D. The col-
loidal slab accelerated in 3D cubic box is fragmented due to the
shatter mechanism. See the supplementary material for movie
(Fig. 10S)



steps is not a trivial problem. Due to additional computa-
tional load generated by more sophisticated numerical
schemes the “generic” DPD model is still too slow to be
competitive with FPM code. The “generic” (multiscale)
DPD model was accomplished for a one-component flu-
id. Its extension to a multi-component fluid is not as
straightforward as for the “classical” DPD [19] and as
intuitive as for FPM.

As we have shown in [24] the standard procedures of
parallelization of MD codes applied for FPM model
yields surprisingly low speedups, probably because of
cache problems. The “generic” DPD model is much
more sophisticated than FPM. Before implementing of
the new “generic” DPD, the problems with efficient
parallelization of FPM should be solved.

All of these factors lead to the degradation of compu-
tational performance for the “generic” DPD. The model,
though very promising for future multiscale simulations
of real fluids, is still too complex for standard simula-
tions involving more than 1 million particles in 3D. In
our opinion FPM (combined with DPD and MD) meets
current computational possibilities better as it is compet-
itive with other mesoscopisc techniques such as lattice
Boltzman gas and direct simulation Monte-Carlo.

Summarizing, simulation techniques such as DPD and
FPM can be employed to study the thermal transport
rates in fluids by the suspension of nanoparticles in
them, because there is at present no real understanding
of the mechanisms by which nanoparticles alter thermal
transport in fluids. Today we have an urgent need to un-
derstand physical and chemical processes involving
nanoscale structures, since society is faced with deadly
phenomena involving the trapping and release of con-
taminants and pathogens. Many of these are in the form
of aerosol and colloidal structures, which provide sites
for complicated interactions with microbes that control
or mediate the bioavailability of a wide variety of organ-
ic and inorganic materials in the mesoscale. All of these
phenomena can be attacked by using the mesoscopic
techniques based on interacting particles.
Supplementary material In the supplementary material it
is possible to zoom in on several figures, and for other
ones movies are available.
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